Abstract:Large Language Models (LLMs) inevitably memorize sensitive information during training, posing significant privacy risks. Machine unlearning has emerged as a promising solution to selectively remove such information without full retraining. However, existing methods are designed for dense models and overlook model sparsification-an essential technique for efficient LLM deployment. We find that unlearning effectiveness degrades substantially on sparse models. Through empirical analysis, we reveal that this degradation occurs because existing unlearning methods require updating all parameters, yet sparsification prunes substantial weights to zero, fundamentally limiting the model's forgetting capacity. To address this challenge, we propose Sparsity-Aware Unlearning (SAU), which decouples unlearning from sparsification objectives through gradient masking that redirects updates to surviving weights, combined with importance-aware redistribution to compensate for pruned parameters. Extensive experiments demonstrate that SAU significantly outperforms existing methods on sparse LLMs, achieving effective forgetting while preserving model utility.
Abstract:Speculative decoding has emerged as a promising approach to accelerate inference in vision-language models (VLMs) by enabling parallel verification of multiple draft tokens. However, existing methods rely on static tree structures that remain fixed throughout the decoding process, failing to adapt to the varying prediction difficulty across generation steps. This leads to suboptimal acceptance lengths and limited speedup. In this paper, we propose SAGE, a novel framework that dynamically adjusts the speculation tree structure based on real-time prediction uncertainty. Our key insight is that output entropy serves as a natural confidence indicator with strong temporal correlation across decoding steps. SAGE constructs deeper-narrower trees for high-confidence predictions to maximize speculation depth, and shallower-wider trees for uncertain predictions to diversify exploration. SAGE improves acceptance lengths and achieves faster acceleration compared to static tree baselines. Experiments on multiple benchmarks demonstrate the effectiveness of SAGE: without any loss in output quality, it delivers up to $3.36\times$ decoding speedup for LLaVA-OneVision-72B and $3.18\times$ for Qwen2.5-VL-72B.
Abstract:The deployment of quantized neural networks on edge devices, combined with privacy regulations like GDPR, creates an urgent need for machine unlearning in quantized models. However, existing methods face critical challenges: they induce forgetting by training models to memorize incorrect labels, conflating forgetting with misremembering, and employ scalar gradient reweighting that cannot resolve directional conflicts between gradients. We propose OEU, a novel Orthogonal Entropy Unlearning framework with two key innovations: 1) Entropy-guided unlearning maximizes prediction uncertainty on forgotten data, achieving genuine forgetting rather than confident misprediction, and 2) Gradient orthogonal projection eliminates interference by projecting forgetting gradients onto the orthogonal complement of retain gradients, providing theoretical guarantees for utility preservation under first-order approximation. Extensive experiments demonstrate that OEU outperforms existing methods in both forgetting effectiveness and retain accuracy.




Abstract:Hallucinations in large language models (LLMs) are commonly regarded as errors to be minimized. However, recent perspectives suggest that some hallucinations may encode creative or epistemically valuable content, a dimension that remains underquantified in current literature. Existing hallucination detection methods primarily focus on factual consistency, struggling to handle heterogeneous scientific tasks and balance creativity with accuracy. To address these challenges, we propose HIC-Bench, a novel evaluation framework that categorizes hallucinations into Intelligent Hallucinations (IH) and Defective Hallucinations (DH), enabling systematic investigation of their interplay in LLM creativity. HIC-Bench features three core characteristics: (1) Structured IH/DH Assessment. using a multi-dimensional metric matrix integrating Torrance Tests of Creative Thinking (TTCT) metrics (Originality, Feasibility, Value) with hallucination-specific dimensions (scientific plausibility, factual deviation); (2) Cross-Domain Applicability. spanning ten scientific domains with open-ended innovation tasks; and (3) Dynamic Prompt Optimization. leveraging the Dynamic Hallucination Prompt (DHP) to guide models toward creative and reliable outputs. The evaluation process employs multiple LLM judges, averaging scores to mitigate bias, with human annotators verifying IH/DH classifications. Experimental results reveal a nonlinear relationship between IH and DH, demonstrating that creativity and correctness can be jointly optimized. These insights position IH as a catalyst for creativity and reveal the ability of LLM hallucinations to drive scientific innovation.Additionally, the HIC-Bench offers a valuable platform for advancing research into the creative intelligence of LLM hallucinations.
Abstract:Signed graphs model complex relationships through positive and negative edges, with widespread real-world applications. Given the sensitive nature of such data, selective removal mechanisms have become essential for privacy protection. While graph unlearning enables the removal of specific data influences from Graph Neural Networks (GNNs), existing methods are designed for conventional GNNs and overlook the unique heterogeneous properties of signed graphs. When applied to Signed Graph Neural Networks (SGNNs), these methods lose critical sign information, degrading both model utility and unlearning effectiveness. To address these challenges, we propose Certified Signed Graph Unlearning (CSGU), which provides provable privacy guarantees while preserving the sociological principles underlying SGNNs. CSGU employs a three-stage method: (1) efficiently identifying minimal influenced neighborhoods via triangular structures, (2) applying sociological theories to quantify node importance for optimal privacy budget allocation, and (3) performing importance-weighted parameter updates to achieve certified modifications with minimal utility degradation. Extensive experiments demonstrate that CSGU outperforms existing methods, achieving superior performance in both utility preservation and unlearning effectiveness on SGNNs.
Abstract:Expanding pre-trained zero-shot counting models to handle unseen categories requires more than simply adding new prompts, as this approach does not achieve the necessary alignment between text and visual features for accurate counting. We introduce RichCount, the first framework to address these limitations, employing a two-stage training strategy that enhances text encoding and strengthens the model's association with objects in images. RichCount improves zero-shot counting for unseen categories through two key objectives: (1) enriching text features with a feed-forward network and adapter trained on text-image similarity, thereby creating robust, aligned representations; and (2) applying this refined encoder to counting tasks, enabling effective generalization across diverse prompts and complex images. In this manner, RichCount goes beyond simple prompt expansion to establish meaningful feature alignment that supports accurate counting across novel categories. Extensive experiments on three benchmark datasets demonstrate the effectiveness of RichCount, achieving state-of-the-art performance in zero-shot counting and significantly enhancing generalization to unseen categories in open-world scenarios.
Abstract:Model quantization enables efficient deployment of deep neural networks on edge devices through low-bit parameter representation, yet raises critical challenges for implementing machine unlearning (MU) under data privacy regulations. Existing MU methods designed for full-precision models fail to address two fundamental limitations in quantized networks: 1) Noise amplification from label mismatch during data processing, and 2) Gradient imbalance between forgotten and retained data during training. These issues are exacerbated by quantized models' constrained parameter space and discrete optimization. We propose Q-MUL, the first dedicated unlearning framework for quantized models. Our method introduces two key innovations: 1) Similar Labels assignment replaces random labels with semantically consistent alternatives to minimize noise injection, and 2) Adaptive Gradient Reweighting dynamically aligns parameter update contributions from forgotten and retained data. Through systematic analysis of quantized model vulnerabilities, we establish theoretical foundations for these mechanisms. Extensive evaluations on benchmark datasets demonstrate Q-MUL's superiority over existing approaches.




Abstract:Drone-based crowd tracking faces difficulties in accurately identifying and monitoring objects from an aerial perspective, largely due to their small size and close proximity to each other, which complicates both localization and tracking. To address these challenges, we present the Density-aware Tracking (DenseTrack) framework. DenseTrack capitalizes on crowd counting to precisely determine object locations, blending visual and motion cues to improve the tracking of small-scale objects. It specifically addresses the problem of cross-frame motion to enhance tracking accuracy and dependability. DenseTrack employs crowd density estimates as anchors for exact object localization within video frames. These estimates are merged with motion and position information from the tracking network, with motion offsets serving as key tracking cues. Moreover, DenseTrack enhances the ability to distinguish small-scale objects using insights from the visual-language model, integrating appearance with motion cues. The framework utilizes the Hungarian algorithm to ensure the accurate matching of individuals across frames. Demonstrated on DroneCrowd dataset, our approach exhibits superior performance, confirming its effectiveness in scenarios captured by drones.




Abstract:Zero-shot object counting (ZOC) aims to enumerate objects in images using only the names of object classes during testing, without the need for manual annotations. However, a critical challenge in current ZOC methods lies in their inability to identify high-quality exemplars effectively. This deficiency hampers scalability across diverse classes and undermines the development of strong visual associations between the identified classes and image content. To this end, we propose the Visual Association-based Zero-shot Object Counting (VA-Count) framework. VA-Count consists of an Exemplar Enhancement Module (EEM) and a Noise Suppression Module (NSM) that synergistically refine the process of class exemplar identification while minimizing the consequences of incorrect object identification. The EEM utilizes advanced vision-language pretaining models to discover potential exemplars, ensuring the framework's adaptability to various classes. Meanwhile, the NSM employs contrastive learning to differentiate between optimal and suboptimal exemplar pairs, reducing the negative effects of erroneous exemplars. VA-Count demonstrates its effectiveness and scalability in zero-shot contexts with superior performance on two object counting datasets.




Abstract:Happiness computing based on large-scale online web data and machine learning methods is an emerging research topic that underpins a range of issues, from personal growth to social stability. Many advanced Machine Learning (ML) models with explanations are used to compute the happiness online assessment while maintaining high accuracy of results. However, domain knowledge constraints, such as the primary and secondary relations of happiness factors, are absent from these models, which limits the association between computing results and the right reasons for why they occurred. This article attempts to provide new insights into the explanation consistency from an empirical study perspective. Then we study how to represent and introduce domain knowledge constraints to make ML models more trustworthy. We achieve this through: (1) proving that multiple prediction models with additive factor attributions will have the desirable property of primary and secondary relations consistency, and (2) showing that factor relations with quantity can be represented as an importance distribution for encoding domain knowledge. Factor explanation difference is penalized by the Kullback-Leibler divergence-based loss among computing models. Experimental results using two online web datasets show that domain knowledge of stable factor relations exists. Using this knowledge not only improves happiness computing accuracy but also reveals more significative happiness factors for assisting decisions well.